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Moments and characteristic polynomials for square 
lattice graphs 

Hongxing Zhang and K. Balasubramanian* 

Department of Chemistry, Arizona State University, Tempe, 
AZ 85287-1604, USA 

The method of moments is used to derive closed analytical expressions for the 
characteristic polynomials of square lattice graphs. We obtain exact analytical formulae 
for three-dimensional cubic lattices, square lattices, tubular square lattices, and cylindrical 
square lattices containing any number of vertices. 

1. Introduction 

The computation of the characteristic polynomials of graphs has received 
considerable attention from mathematicians and chemists in the l~ast two decades 
[1-41]. This is because not only are these polynomials important graph invariants, 
but they also have many applications in chemistry and physics, including chemical 
kinetics [40], quantum chemistry, dynamics of oscillatory reactions [32], lattice 
statistics [6,42, 43], and the estimation of the stability of conjugated systems [24, 30, 31 ], 
formulation of the TEMO theory [40], electronic structure of organic polymers and 
periodic structures [3,9], etc. 

Since Sachs published his famous theorem in 1963 [44], several approaches 
have been developed for the evaluation of the characteristic polynomials [16-31]. 
However, the practical computation of these polynomials remained as a very difficult 
problem until Balasubramanian programmed Frame's method [45,46] in 1984 [1]. 
Balasubramanian's program makes it possible for us to obtain the characteristic 
polynomials of arbitrary graphs, even ones containing several hundred vertices, by 
computer. However, it is important to derive analytical results or recursion formulae 
for the polynomials of homologous or special graphs, especially as the number of 
vertices approaches infinity. In fact, since the middle of the 1970s, Hosoya [16-22], 
Trinajsti6 [36], Gutman [23-25], Tang and Jiang [26-30], and other theoretical 
chemists have made significant efforts to develop such techniques. Several approaches 
such as the partition method, the contraction method and the operator method were 
developed to evaluate the characteristic polynomials and the eigenvalues (HMO 
energy levels) of chemical graphs [16-31]. Some of the results have been successfully 
used in a series of chemical homologous graphs. 
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Recently, Jiang and Zhang [29, 30, 47-51] have developed the moment approach 
and the molecular fragment approach to rationalize systematically the aromaticity, 
total energy and chemical reactivities, as well as the characteristic polynomials of  
conjugated molecules and related graphs [51 ]. They expressed these polynomials in 
terms of the moments of graphs and in terms of fragments of bipartite graphs. One 
of the advantages of the moment method is that it provides not only a starting point 
for the computation of the characteristic polynomials, but also a convenient way to 
obtain the analytical or recursion formulae of the polynomials in terms of graph 
indices for homologous graphs. 

In this paper, the moments of two- and three-dimensional square lattice 
graphs are expressed in terms of the moments of linear chains and single tings for 
planar square lattices, tubular square lattices, cubic square lattices and cylindrical 
square lattices, respectively. Thus, multi-dimensional problems are reduced to one- 
dimensional ones, which makes it possible to obtain the characteristic polynomials 
of  such graphs even when they are very large. Furthermore, the moments of these 
graphs are expressed in terms of their graph size indices via the moment formula 
of  linear chain and single tings. Subsequently, the characteristic polynomials are 
obtained from the moments. 

2. Moment method for evaluation of characteristic polynomials 

Several years ago, Jiang and Zhang [29,30,47-50] used the moment method 
in the context of chemical graph theory for rationalizing stability and reactivities 
of  conjugated systems, although a similar moment method was used by Burdett and 
co-workers and others in extended H~ickel theory [51,52]. One of the important 
results is that a set of formulae were obtained for expressing the characteristic 
polynomials in terms of the graph moments and in terms of molecular fragments 
for altemants [29,30]. These formulae can be conveniently used to evaluate the 
characteristic polynomials, in analytical or recursive form for homologous graphs. 
We now introduce the method briefly. 

For any given graph G with N vertices, its characteristic polynomial Pc(x) 
is defined as follows: 

Pc(x) = I x / -  A(G)I = x N +alx N-1 +a2 xN-2 + . . . + a k x  N-~ + . . . + a  N, (1) 

where I is the identity matrix with dimension N, A(G) is the adjacency matrix of 
graph G with its elements 

1, if vertices i and j are adjacent; 

AiJ = 0, otherwise 
(2) 

and ak is the kth coefficient of the polynomial. What we need to do is to evaluate 
all the ak's for a given graph. 
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Let PG(x) = 0, with N real zero points (xl, xi . . . . .  x/v), called the eigenvalues 
or the spectra of  the graph G. The mth moment/ . t  m of  graph G is defined as 

N 
u,,  = x?  + x7  + . . .  + x'; = x?.  

i=1 

Obviously, an alternative definition of/.tin is 

/.t,. = trace (A"). (4) 

Equation (4) can be taken as one of  the algorithms for evaluating moments. It can 
be deduced from the relations between the coefficients of  the polynomial and its 
zero points that 

N 

Z X i = [d 1 = - a  1, 
i=1 

N N 

- 2  ~ ~ xix j = #2 -b all. q = -2o.2, 
i <j 

N N N 

3 ~ ~ ~ xixjx  k = f13 "1- alia 2 + a2/z 1 = -30.3 , 
i < j  <k 

(5) 

Finally, we can obtain 

k 

kak = - Z  ak-i]'ti" 
i=1 

(6) 

Equation (6) is the recursion formula of  the characteristic polynomial in terms of  
moments; it allows us to generate the kth coefficient at from al,  a2 . . . . .  a t_  1 and 
#l,/.t2 . . . . .  #k. Generally, such a recursive expression can easily be programmed 
for computing any ak via al and moments by computer. 

Now, let us recall Frame's  recursion formula [2,3], 

1 
- a k  = k" trace(AAk-1)' (7) 

where A is the adjacency matrix, and Ak_ 1 obeys the following equations: 

Ao=1, 

A 1 = AA o + all, 

A2 = AA 1 + a.21 , (8) 

A k = AAk_ 1 + akl, 
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Substituting eq. (8) into eq. (7), we have 

- k a  k = trace (A k + Ak-la 1 + Ak-2a2 + . . .  + Alak_l) 

= l.tk + a l l I k _  1 + a 2 l . I k _  2 + . . .  + a k _ l ~ t  1. 

This is eq. (6). So, the moment method used by Jiang and Tang subsequent to 1986 
is equivalent to Frame's method used by Balasubramanian in 1984 and earlier by 
others in different contexts. From the induction of eq. (6), one can obtain [29] 

a k = ~ _  ' ~ _ _  ____L 
(m) 1=1 mr! 

(9) 

where (m) signifies a set of non-negative integers (ml, m2 . . . . .  mk) satisfying 

k 
k = lm I + 2 m  2 + . . . + k i n  k = ~ , l m  t. 

t=l 

Equation (9) clearly shows the relation between moments and characteristic polynomials. 
If the moments are known, we can calculate the characteristic polynomial 
from eq. (9). Since moments can be expressed in terms of the basic invariants of 
graphs, eq. (9) can be further transformed into a formula of the characteristic polynomial 
in terms of the basic invariants of graphs [28,29]. In this paper, we express the 
moments in terms of graph size indices for square lattice graphs, and obtain the 
characteristic polynomials from eq. (9). The advantage of the moment method, which 
we exploit fully in the present paper, is that it provides analytical formulas which 
can be extended to the limit when the number of vertices goes to infinity. 

3. Moments of linear chains and single rings 

As shown later, the moments of square lattice graphs are closely dependent 
on the moments of linear chains and single rings, so that we should obtain the 
moment  formulae for these graphs. Many results, such as spectra and characteristic 
polynomials, have already been derived. Let us start from their graph spectra. 

For any given linear chain and single ring with N vertices (see fig. 1), it is 
well known that from the Chebyshev polynomials or the symmetry method their 
eigenvalue spectra can be expressed as follows [31]: 

L =  2 C O S [ ~ |  p =  1, 2, N X p  , . . . , (for a linear chain), 
k l ¥ " t ' l J  

(lO) 

(9  mt'~ 
XpR'-2cos/~l,  p =  1, 2 , . .  N .  , (for a single ring), (11) 

\ i v  } 
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1 2 3 N-1 N 
0 O 0 .,. 0 - - 0  1 

3 

N-1 

Fig. 1. Graphs of linear chain and single ring. 

L and R signify the pth eigenvalues of the linear chain and the single ring, where xp xp 
respectively. Then from the moment definition, eq. (3), we have 

uL(N) = 2 m ~ COS m , (12) 
p=l 

o r,,(2px'~ 
u~(N) : 2 rn X cos ~--N--)' (13) 

p=l 

where ,uL(N) and /.t~(N) stand for mth moments of N-membered linear chains and 
single rings, respectively. Starting from eqs. (12) and (13) and using Euler's 
transformation, we can express moments of these graphs in terms of the graph size 
N and moment labels as follows: 

(1) For an N-membered linear chain, it can be seen that 

kiln(N) = (N + 1)C~n - 2 2n, 

/.tLn+l(N) = 0, 
(14) 

where C stands for the binomial coefficient. Generally, for any two non-negative 
integers a and b satisfying a > b, we have 

Ca b = a! b! ( a -  b)!" (15) 

(2) Hence, for an N-membered single ring, we obtain 

I n ~ N ]  

U~n(2N) = 2NC~n + 4 N  y~ C~n Nrn, 
m=l 

/~n+l(2N) = 0, 

(16) 

[ n l ( 2 N + l ) l  _ . 

+ 1 ~ X" t ",n-~'mlv-m /tRn (2N + 1) = (2N + 1)C~n + 2(2N J /__, W2n , 
m=l 

(17) 
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[(n+N+I)I(2N+I)] 
#~n+1(2U + 1) = 2(2N + 1) ~ '  ,..n-ZmU-m+N+l ~ 2 n + l  ' ( 1 8 )  

ra=l 

where [ ] stands for the greatest integer containing the number within the square 
bracket. 

4. M o m e n t s  and characteristic po lynomia l s  of  square lattices 

As a set of important regular graphs in graph theory and statistical physics, 
square lattice graphs have received much attention either physically or mathematically 
in recent years [3, 18, 22,42,43]. They are the basis of two-dimensional Ising models 
and lattice gas statistics. In fact, the general dimer statistics of these graphs for 
partial coverings remains as yet unsolved. So, it is of interest to investigate the 
moments and characteristic polynomials of these graphs. 

In this section, we consider two kinds of two-dimensional square lattice 
graphs, planar square lattices and tubular square lattices (see fig. 2), and two kinds 
of three-dimensional square lattice graphs, cubic square lattices and cylindric square 
lattices (see fig. 3). Here, we need pay attention only to planar square lattices; their 
results can be easily extended to the others. For any given planar square lattice with 
M rows and N columns, label its points as shown in fig. 2. Under this labelling, its 
adjacency matrix A is partitioned as follows: 

"A N I . ~  
1 A N I 

A = I " .  .. , (19) 

• .. A N I 

I AN ~ x M  

where I is the N-dimensional identity matrix and As is exactly the adjacency matrix 
of an N-membered linear chain, i.e. 

= 

I = 

0 

1 "'. 1 

1 1 ~ ]  , 

~ " "  1 JNxN 

NxN 

(20) 

(21) 
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1 2 .., N 

N+I N+2 .,. 2N 

( M - I ) N + I  (M- 1)N+2 i',,2q 

2~L_ 

i 

J 

Planar square lattice Tubular square lattice 

Fig. 2. Two-dimensional square lattice graphs. 

/ ?  
//A N/// 

/ / /  
//H 
//v" 
/ /  

\ 
\ 

/ 
/ 

Cubic square lattice Cylindrical square lattice 

Fig. 3. Three-dimensional square lattice graphs. 

Let 

= 

AN 

AN 

AN 

then eq. (1) can be written as 

l M = 

0 I 

1 0 

% 

A = B  M + 1 M. 

Since BM and It, t are two commuting matrices, we  obtain 

° , °  / 

1 0 

, (22) 

(23) 
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2n 
Cm'B2n-m'fm" A2n = (BM + IM) 2n = Z.~ 2n M "M , 

Wlt=O 

(24) 

2n 
X-" cm'm ,B2n-m' l  m'. I~n(M x N) = Tr (A 2n) = ].~ 2 n i r t  M M ) '  

/?le=O 

(25) 

where /~, ,(M × N) denotes the 2nth moments o f M  × N planar square lattices• From 
(19) it can be seen that 

A 2 n - m ~  

B2n-m" = A 2n-m" 
"'. (26) 

When m '  is an even number standing for 2m, we obtain 

, , , o  

0 nMl  J 

(27) 

i.e. the diagonal is non-zero and other bands are alternatively zero, where  
nl + n2 +. • • + nM = #~.~ (M), i.e. the 2mth moment of an M-membered linear chain. 
When m '  is an odd number, 2m + 1, we obtain 

12m+l = 

0m. ] 
mll 0 "'. 

• ' .  I ' 
(28) 

i.e. the diagonal is zero and the off-diagonal bands are non-zero altematively. Using 
eqs• (23)-(26),  we obtain 

T .~2n-2m-2m. nlTr (A2n-2m) + . . . +  nMTr(A2n-2m) r (IJ M 1M ) = 

= (n I + n 2 + . . .  + nM)Tr(A2n-m), (29) 

T :~2n-2m-l.2m+l. 
r~.t~ M ~M ) = 0. (30) 
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Noticing that nl + n2 +. • • + nu =/-tL(M), and using eq. (4), we have 

Tr (B~'-z ' l~t") = IRL,,,(M)#L,,_2~(N). (31) 

Substituting eq. (28) into eq. (22), we obtain the final moment formula 

/! 

/~n(M x N) 2m L L = EC~n ll~m(M)#'2n-2ra(N), 
rn=O 

l~2n+l(M X N) = 0. (32) 

Following the same procedure, we can obtain the moment formulae of the tubular, 
cubic and cylindric square lattices as follows. 

For the tubular square lattice, spanned by an M-membered linear chain and 
an N-membered single ring, we obtain 

/1 

2m L M R N 1.1Tn(M X N) = ~ C2n ]'~rn( )/22n-2m(), (33) 
m=O 

n 

= c2m L "M" R "N" /z~n+l(M x N) Y~ 2n+l~/2m (,)#2n+l-2m( )" (34) 
m = 0  

For the cubic square lattice spanned by three M-, N-, L-membered linear 
chains, it can be seen that 

n In 

Cb 2m 2/ L L L M R N 112n (M × N) = E E C2n C2ra#21 ( ) /d2m-21(  ) # i n - 2 m ( ) ,  
m--0 1=0 

Cb /~,,+I(M x N × L) = 0. (35) 

For the cylindrical square lattice spanned by M- and L-membered linear 
chains and an N-membered single ring, we obtain 

n m 
C1 2m 21 L L L M R lZ2n(M X N x L) = ~_~ ~_~ C~,, C~m#21( )]'/2m-2/()#2n-2m(N), (36) 

ra=O l=O 

/1 t n  

~ l  "M X'~c2m ~ 2 t  L- L- L "M" R "N" 
n+l I, X N x L) = ~ 2., 2n+l("2m~121 ( )~m-21[ )flY2n+l-2m[ )" 

m=0 /=0 

(37) 

Equations (32)-(37) successfully express the moments of two- and three- 
dimensional square lattices in terms of moments of  chains and rings. It is obvious 
that this set of  formulae simplifies greatly the evaluation of moments for lattice 
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graphs. Substituting eqs. (14), ( i6) - (18)  into eqs. (32)-(37), we can derive the 
moments formulae of two- and three-dimensional square lattices in terms of their 
graph size indices. 

For the planar square lattice spanned by M- and N-membered linear chains, 
we obtain 

n 

#Pn(M x N) = ~ P(M, N, m), 
m=O 

P M N) 0, ~/22n+1 ( X = 

where 

(38) 

P(M, N, m) = C~[(M + 1)C~m - 22m ] [(N + 1)C~-__'~m - 22n-2m]. (39) 

For the tubular square lattice spanned by an M-membered linear chain and 
NR-membered single ring (NR = 2N or 2N + 1), we get 

n 

#W n (M x 2N) = y_~ T 1 (M, N, m), 
m=0 

T M /d.2n+l ( X 2N) = 0, 

(40) 

where 

n 

pWn[M X (2N + 1)] = y_~ T2(M, N, m), (41) 
m=0 

n 

T X ~t2n+1[M ( 2 N + l ) ] =  ~T3(M,N,m), (42) 
ra=0 

[(n-re)IN] 
Tl(M,N,m)=C2nm[(M+l)C~m-22m]{2NC~n-_m2m + a N  ~ C~-n--m2mNq}, (43) 

q=l 

T2(M, N, m) = c2m[(M + 1)c2m~ - 22m ] 

[(n-m)l(2N+l)] 
x {(2 N + 1)C~n-_m2m + 2(2 N + 1) ~ C~2_m2-mN-q}, 

q=l 
(44) 

T3(M, N, m) = 2(2N + 1)C2~n[(M + 1)C~m - 22m ] 

[(n-m+N+l)l(2N+l)] 
"v cn-m-2qN-q+N+l X La  2n-2.m+l • 
q=l 

(45) 
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For the cubic square lattice spanned by M-, N-, 
chains, we obtain 

n 
Cb #2n (M X N X L) = ~ Cb(M, N, L, m), 

m = 0  

#2c~'n+l(M x N x L) = 0, 

where 

Cb( M, N, L, m) = C2nm[( N + 1)c~n-._m2m - 2 2n-2m ] 

and L-membered linear 

(46) 

m 
21 22m-2/]. x~_~C~m[(L+llCI2t _22/1[(M + m-l llC~m_2t - (47) 

/=0 

For the cylindrical square lattice spanned by L- and M-membered linear 
chains and an NR-membered single ring (NR = 2N or 2N + 1), we obtain 

n 
CI I, t2n(M X2N X L) = ~ Cll(M,N,L,m), 

m = 0  

• C 1  : ~,r X 2n+lt, lvl 2N X L) = O, 

(48) 

where 

n 
C1 #2n[M x (2N + 1) x L] = ~ C12(M, N, L, m), (49) 

m=0 

/1 

/.tCl+l [M x (2N + 1) x L] = ~,  C~ 3 (M, N, L, m), (50) 
m = 0  

[(n-m)/N] 
Cll(M, N, L, m) 2m n-m = C~n {2NC~n_2m + 4N ~ C~n_m2-m Nq } 

q=l 

m 

x £ C122tm [ (L + 1)Ctl - 22t] [(M + 1)C2mm-_/2/- 2 2m-2t ], 
/=0 

(51) 

[ ( n - m ) / ( 2 N + l ) ]  
= _ c n - m - 2 q N - q l  C12(M,N,L,m) c2m{(2N + l)C~-m2m + 2(2N + l) ~ 2n-2m , 

q=l 

m 
21 l + l ~ r - , m - t  _22m-2t]  X £ C12m[(L + 1)C~l - 22/l [(M : ~ 2 m - 2 1  

l=0 
(52) 
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[(n-m+N+l)/(2N+l)] 
C13(M, N, L, m) = ~2m r4 ~r ~, [-,n-m-2qN-q+N+l "2n+lk '* + 2) z : . ,  "-'2n-2ra+l 

q=l 
m 

x E C12/[(L + 1)Cll 21 + 1 m-I 22m-21 - 2  ][(M )C~m_2t- 1. 
l=O 

(53) 

Equations (38)-(53) are the moment formulae of two- and three-dimensional square 
lattices in terms of their graph size indices L, M and N. On substituting them into 
eq. (6) or eq. (9), the characteristic polynomials can be obtained. For planar square 
lattices 

k 1 [ l / ] mt 
a2k(M x N)= ~ I I  - -  - ~ ~ P(M,N,m) , (54) 

(m l,m 2 ..... m k) l-1 ml! m=0 

k 
where ~ Im I = k; 

l=l 

axk+l (M x N) = O. 

For tabular square lattices 

k E i m, a2k(M x 2N) = y~ I ]  1 1 
(ml.m2 ..... ink) l-1 m - -~ m=02 T I ( M , N . m )  , 

where 
k 

lm t = k; 
l=l 

(55) 

a2k+l(M X 2N) = 0; 

a2k[M x (2N + 1)] = 
2 k [ 1 / 2  I mt 
Y I  1 1 ~.~ T2(M,N,m ) 

(~,,"2 ..... , ,~) ¢,,enl ml---~" - lm=o 

where 

2k-1 [ 
XI]±-- 

oddt mr! 

2k 
lm t = 2k; 

1=1 

(/-1)/2 "]mt 

~=o T3(M'N,m)]  , (56) 
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f i  [ 1/2 ] ms 
a2k+l[M x (2N + 1)] = E 1 _ 1 E TE(M,N,m) 

(mt,m 2 ..... m2k+l ) event ml! l m=O J 

2k+l 

×17 
oddl 

11112 ]m 
- -  - i ~'~ T3(M'N'm) ' 
ml ! m=0 

where 
2k+l 
~ lm t = 2 k + l .  
l=l 

For cubic square lattices 

a2k[M x N x L] = E E rI 1 -  
(m l,m 2 ..... m k) 1=1 ml[ 

, ]m, 
~', Cb(M,L,m) , 
,~=0 

where 
k 

Imk = k; 
/=1 

a,2k+l[M x N x L] = O. 

For cylindrical square lattices k [ lm 
a2ktM x 2N x Ll = ~ r I  1 1 

(ml,m 2 ..... ink) /=1 ml---~" -- "~" m=02 C l l ( M '  L, m)  , 

where ~ lm t = k; 
/---1 

(57) 

(58) 

(59) 

a2k+l[M x 2N x L] = 0; 

a2k[M x (2N + 1) x L] = E 1_~ _ ~ E C I 2 ( M ' N , L ' m )  
(ml,m 2 ..... m2k) even I ml [ • m=O 

where 
2k 

lm t = 2k; 
/-1 

2k-1 I x l -  I 1 1 
oddt ml--~ - ~ 

(1-1)/2 ] mt 
C13( M, N, L, m) , 

m=O 
(60) 
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a2k+l[M × (2N + 1) × L] = 
2 1[ 

Z H - - -  
(ml,m 2 ..... m2/+l ) even/ ml! 

1/2 ] mt 
C12(M, N, L, m) 

m=0 

where 

21:+1 [ 
x l  ~ 1 1 

odd t ml---~" - 7 

2k+l 
~ ,  Im t = 2k + 1. 
/=1 

(/-1)/2 "] mt 

m~__ ° C13(M, N, L, m)J , (61) 

Equations (54)-(61) are the analytical formulae of characteristic poly- 
nomials for square lattice graphs obtained from the moment method, which allows 
us to evaluate the polynomials of these graphs even as the graph indices M, N, and 
L tend to infinite. This indicates that the moment method is also effective for 
computing the characteristic polynomial and especially in dering the analytical or 
recursion formulae for homologous series. An open problem now is how to 
extend this method to other systems, for example an infinite honeycomb lattice 
graph. 

In 1983, Hosoya and Ohkami [19] developed a systematic approach, called 
the operator method, for evaluating various kinds of polynomials, such as the 
characteristic polynomial, the matching polynomial, the king polynomial, etc., of 
homologous graphs. Since then, Hosoya and co-workers have applied this approach 
to a series of homologous graphs and obtained many recursion formulae [19-22].  
Essentially, the operator method is based on the partitioning technique, so that its 
use depends on how many kinds of graphs are formed when we delete some edges 
in the graph considered. Generally, if the partitioning method yields more than four 
graphs, it seems to be difficult to obtain the eigenvalues of the operator determinant. 
In two- or three-dimensional homologous graphs there are, respectively, two or 
three graph size indices, such as M, N, L in square lattice graphs. The operator 
method can work only when one of the indices tends to infinity, which means that 
the method is more effective for one-dimensional problems rather than two- or 
three-dimensional ones. However, the operator method is universally applicable to 
all kinds of polynomials, while the moment method is not. For example, the moment 
method is difficult to use for matching polynomials because it is difficult to obtain 
"matching moments". 
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